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INTRODUCTION

The transition from Lower to Upper Cretaceous deposits in

Texas and Oklahoma captures significant changes in the

biologic, climatic, and geographic spheres at both regional

and global scales. Regionally, this includes dynamic evolutionary

changes with major faunal turnover events among archosaurs

and mammals, the rise of angiosperms, and the first appearance

of snakes and marsupial taxa (Jacobs and Winkler, 1998;

Winkler et al., 2015). Additionally, these biotic changes occur

during intervals of major paleogeographic changes with a

transgression of the Glen Rose Sea onto the Texas craton

around the Aptian/Albian boundary, followed by the formation

and completion of the Western Interior Seaway (Haq et al.,

1987; Kauffman and Caldwell, 1993; Slattery et al., 2015).

Globally, this time frame (Aptian-Cenomanian) also encompasses

several major perturbations in the global carbon cycle, which

are associated with the widespread development of anoxic-

euxinic conditions in the ocean basins, known as Ocean

Anoxic Events (OAE’s; Schlanger and Jenkyns 1976;

Jenkyns, 1980, 2010; Arthur et al. 1987; Schlanger et al.;

1987). These include the Early Albian OAE1b (Jenkyns,

2010), the Albian-Cenomanian OAE1d (Grӧcke et al., 2006;

Richey et al., 2018), and the mid-Cenomanian Event (MCE;

Coccioni and Galeotii, 2001). Several studies have attempted

to place these events in the context of abiotic and biotic

factors including regional paleogeographic changes with the

formation and completion of the Western Interior Seaway

(Jacobs and Winkler 1998, Winkler et al., 2015) and changes

in paleoclimate (Andrzejewski & Tabor, 2020).
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Deciphering the influence of regional and global changes in

deep time is difficult given numerous factors including incomplete

sedimentary records, uncertainty in stratigraphic correlation,

and varied sample preservation. Paleosols constitute a large

part of the terrestrial sedimentary record and thus provide a

wealth of information regarding Earth history (Retallack,

1986). Paleosols capture slices of geologic time and provide

a unique interface where biotic, climatic, and atmospheric

processes interact. This allows paleosols to record important

factors that can be used to reconstruct paleoenvironment and

estimate paleotemperature, paleoprecipitation, terrestrial organic

matter carbon values, paleoatmospheric pCO2

 levels, and

absolute geologic age (e.g. Sheldon and Tabor, 2009; Tabor

and Myers, 2015, Tabor et al., 2017; Smith et al., 2017;

Joeckel et al., 2023). Given the preservation of paleosols in

terrestrial units during the transition from Lower to Upper

Cretaceous in Texas and Oklahoma, we apply current

methodologies and developed proxies to investigate the

possible influences of regional and global paleoprecipitation

and paleoatmospheric pCO2 on changes in the δ13C of

terrestrial organic matter.

GEOLOGICAL SETTING

This study analyzes data collected from 5 localities, spanning

the Lower to Upper Cretaceous (Aptian-Cenomanian) stratigraphy

of north-central Texas and southern Oklahoma. This includes

two fossil localities from the Twin Mountains Formation in

north-central Texas: Proctor Lake (PL) and Jones Ranch (JR),

one locality in the Antlers Formation of southern Oklahoma:

(CR), and two localities in the Woodbine Group in north-

central Texas: the Arlington Archosaur Site (AAS), and

Acme Brick Pit (ABP) (Fig. 1). Correlation of these localities

is difficult as the succession includes the time-transgressive

progradational-retrogradational sequence of the Western Interior

Seaway. However, the stratigraphic analysis by Jacobs and

Winker, (1998) provides sufficient constraints to place these

localities within a framework that ensures chronological

order, albeit without chronometric dates (Fig. 1). Andrzejewski

and Tabor, (2020) and Andrzejewski et al., (2022) report data

from paleosols sampled at these localities including paleo-

precipitation, paleotemperature, and atmospheric pCO2

estimates which will be referenced herein.

The Twin Mountains Formation represents the lowest

Cretaceous deposits in north-central Texas and lies unconformably

upon Pennsylvanian and Permian strata (Young, 1967). The

overlying Glen Rose Formation contains ammonite faunas

used to define the Aptian-Albian boundary indicating the

Twin Mountains Formation is Aptian in age (Young, 1967;

Scott, 1940; Young, 1974; Young 1986). Exposures of the

Twin Mountains Formation have been interpreted as sedimentary

deposits of meander belt fluvial systems transitioning strati-

graphically upward to marginal marine deposits (Hall, 1976).

The Proctor Lake locality lies approximately 17 m above the

Pennsylvanian contact and 35 m below the Glen Rose

Formation contact. The Jones Ranch fossil locality occurs

stratigraphically higher in the Twin Mountains Formation,

occurring approximately 9.7 m below the Glen Rose Formation

contact. Morphology and data produced from the paleosols

sampled from these localities are described in Andrzejewski

and Tabor (2020) and Andrzejewski et al. (2022).

The marine-dominated Glen Rose Formation pinches out to

the north, juxtaposing the terrestrial-dominated Twin Mountains

and Paluxy Formations which combine to form the Antlers

Formation (Fig. 1). The Antlers Formation contains claystone

layers with unconsolidated sandstone lenses and carbonate

concretions that have been interpreted as fluvial, deltaic, and

strandplain settings (Winkler et al.1990; Hobday et al. 1981).

The absence of the Glen Rose Formation as a biostratigraphic

marker makes it difficult to determine precise stratigraphic

positions of localities within the Antlers Formation. Locality

CR sampled in southern Oklahoma is stratigraphically equivalent

with the fossil locality OMNH V706, which is considered to

be located in the middle of the Antlers Formation,

approximately 87 m above the base and stratigraphically

above the PL and JR localities (Cifelli et al., 1997).

The Woodbine Group has a long history of revisions in

stratigraphic subdivision and nomenclature based on differing

interpretations of surface exposures versus subsurface drill

cores and wireline logs (Ambrose et al. 2009; Berquist, 1949;

Dodge 1952; Dodge 1968; Hentz et al. 2014; Johnson, 1974;

Murlin, 1975; Oliver, 1971; Trudel, 1994). Current stratigraphic

subdivision recognizes two units: the Dexter and Lewisville

Formations. The lower Dexter Formation represents marginal

and marine environments (Berquist, 1949; Dodge, 1952;

Dodge 1968; Dodge, 1969; Johnson, 1974; Oliver, 1971)

while the overlying Lewisville Formation represents a low-

lying coastal plain (Main, 2009; Oliver, 1971; Powell, 1968).

Both the Arlington Archosaur Site and Acme Brick Pit

localities occur in the middle to upper Lewisville Formation.
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Due to lack of surface exposures and chronostratigraphic

constraint exact stratigraphic relationship between the two

localities cannot be determined. The presence of the ammonite

Conlinoceras tarrantense has been used to indicate an early

middle Cenomanian age (~96 Ma) for Lewisville Formation

strata (Kennedy and Cobban, 1990; Emerson et al., 1994;

Lee, 1997a, b; Jacobs and Winkler; 1998; Gradstein et al.,

2004). However, Ambrose et al., (2009) suggest that upper

portions of the Lewisville Formation were deposited during

the late Cenomanian, with overall deposition of the Woodbine

Group ending around 92 Ma. Andrzejewski and Tabor,

(2020) contains descriptions of the Arlington Archosaur Site

and Acme Brick Pit, including detailed descriptions of the

sampled paleosols.

METHODS

Bulk paleosol samples were collected approximately every

10 cm from the measured section at the Arlington Archosaur

Site. Two bulk samples were collected at the Acme Brick Pit

site, one from the paleosol B horizon and one 15 cm above

the B horizon. New δ13C values for bulk sedimentary organic

matter reported from the Woodbine Group were produced at

the Keck Palaeoenvironmental and Environmental Stable

Isotope Lab at the University of Kansas. Samples were

powdered with mortar and pestle to generate approximately

1 g of powder. Samples were then decarbonated with 0.5 M

hydrochloric acid for at least 24 h or until samples no longer

reacted with fresh acid. Samples were then rinsed with

deionized water by centrifugation and decanting until no

longer acidic. Rinsed samples were then dried at 50oC.

Approximately 0.3-2 mg per sample were combusted with a

Costech elemental analyzer, with the resulting CO2 analyzed

with a ThermoFinnigan MAT 253 continuous-flow isotope

ratio mass spectrometer. All samples are reported relative to

V-PDB, with accuracy monitored by analysis of internal

FIGURE 1. Regional stratigraphic column and map of study area: (A) lithostratigraphic units spanning the Early to Late Cretaceous interval of

north-central Texas and southern Oklahoma (modified from Jacobs and Winkler, 1998). (B) map displaying the study area with localities

correlating to the site number listed with collected samples: 1 = Proctor Lake locality (PL), 2 = Jones Ranch locality (JR), 3 = Cross locality

(CR), 4 = Acme Brick Pit (ABP), 5 = Arlington Archosaur Site (AAS). 
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standards IAEA-600 and USGS 24 to within 0.1‰. Methodology

for previously reported chemical, mineralogical, and stable

isotopic analyses can be found in Andrzejewski and Tabor,

(2020) and Andrzejewski et al. (2022).

A 5 cm interval of bulk paleosol sample collected approximately

50 cm below the top of the B horizon from the Jones Ranch

Quarry was selected for detrital zircon U-Pb geochronology.

Zircon grains were separated from bulk paleosol material at

the University of Kansas Isotope Geochemistry Laboratories

by a combination of chemical and physical disaggregation

and heavy-mineral separation techniques including a disk

mill, ultrasonic bath (Hoke et al. 2014), FrantzTM isodynamic

magnetic separator, and heavy liquids (methylene iodide). At

least 175 grains were handpicked under a binocular microscope

and mounted on double sided tape. The purpose of the

investigation is determination of the age of deposition based

on the premise that mature paleosols may be cryptotephra, as

they can capture volcanic zircons during the time period of

soil formation (Smith et al., 2017 Joeckel et al., 2023).

During grain picking preference was therefore given to

euhedral, unabraded, colorless, zircons to maximize the

chance to find the youngest, non-detrital zircons. Results for

older, detrital grains are therefore not providing an unbiased

sample of the entire detrital population, but only a qualitative

example of older populations, and should not be used in

statistical comparisons and likeness tests. U-Pb zircon ages

were determined by laser ablation inductively coupled plasma

mass spectrometry (LA-ICP-MS) using a Photon Machines

Analyte G2 193 nm ArF excimer laser ablation system

coupled with a Thermo Scientific Element2 ICP-MS. Circular

15 µm spots were ablated with the laser at 1.3 J/cm2 fluence

with a 10 Hz repetition rate for 25 seconds, and ablated

material was carried to the ICP-MS in helium gas with a

1 L/min combined flow rate. Downhole elemental and

isotopic fractionation and calibration drift were corrected by

bracketing measurements of unknowns with zircon reference

materials using the IOLITE software package (Paton et al.,

2011) and the VizualAge data reduction scheme (Petrus and

Kamber, 2012). Zircon GJI (Jackson et al., 2004) was used

for calibration, the zircon reference materials Plesovice

(Sláma et al., 2008), Fish Canyon Tuff (FCT, Wotzlaw,

2013), Duluth Gabbro (FCSZ, Paces and Miller, 1993) were

used to validate the calibration. All reference materials

matched the published ages within 1% uncertainty. Analytical

results are presented using Isoplot (Vermeesch, 2018). The

maximum age of deposition was determined from the youngest

population of grains. Kernel density estimates (KDEs) were

produced using DensityPlotter 7.1 (Vermeesch 2012).

RESULTS

The δ13C of bulk sedimentary organic matter collected

from two localities in the Woodbine Group ranged from −22.2

to −26.1‰ with an average of −24.6‰ reported from 23

samples (Table 1). The δ13C values reported for organic

matter in the Woodbine Group are consistent with C3

vegetation shown to dominate the Cretaceous landscape

(Koch, 1998). These reported values are combined with

previous analyses of organics occluded in paleosol carbonate

nodules from Andrzejewski et al. (2022) and shown in Fig.

2(A). While comparing the δ13C of plant organic matter, we

note that results from Myers et al. (2016) indicate an ~1‰

offset between average δ13C values of bulk and occluded

organic matter; however, this offset is far less than the

overall range δ13C values of plant organic matter reported at

the localities and does not affect the results of the produced

chemostratigraphic profile. Results from this combined

chemostratigraphic profile show a sharp decrease of ~3.0‰

in the mean δ13C of organic matter from the Proctor Lake

locality to the Jones Ranch locality in the Twin Mountains

Formation. This is followed by a smaller decrease in the

mean δ13C of organic matter of ~0.6‰ from the Jones Ranch

locality in the Twin Mountains formation to the Oklahoma

localities in the Antlers Formation. The mean δ13C of organic

matter between localities in the Antlers Formation and the

Woodbine Group appear to be fairly consistent with their

mean values overlapping.

Results showing the concordia ages of the 4 youngest

concordant zircon grains from a total population of 175

zircon grains analyzed from the Jones Ranch locality in the

Twin Mountains Formation are shown in Figs. 3 and 4. The

youngest four overlapping zircon U-Pb results from this

population (2.3% of total) yield a maximum depositional age

of 113.1 ± 1.5 Ma. Microscope images of these four euhedral

zircon grains are shown in Fig. 3, indicating minimal detrital

transport of these grains. This age fits within the span of the

Aptian/Albian stage boundary and is consistent with previously

reported age estimates of the locality based on stratigraphic

relationship and overlying biostratigraphic markers in the

Glen Rose Formation (Young, 1967; Scott, 1940; Young,
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1974; Young, 1986). These results provide the first absolute

age determined for the upper Twin Mountains Formation and

the Jones Ranch fossil locality.

DISCUSSION

The δ13C or plant organic matter is thought to be

influenced by several factors, the most influential being mean

annual precipitation (Swap et al., 2004; Schulze et al., 1998).

Modern studies show C3 plants that are water stressed and

receive lower amounts of mean annual precipitation correlate

with more positive δ13C values (Kohn, 2010; Ma et al.,

2012). The Cretaceous record in Texas and Oklahoma is

consistent with this relationship, as shown by the δ13C of

organic matter results of this study and Andrzejewski et al.

(2022) in relation to paleoprecipitation estimates produced by

Andrzejewski and Tabor (2020) (Fig. 2). The PL locality

recorded the most positive δ13C organic matter values,

averaging −21.3‰ which correlate to the lowest MAP estimates

averaging 331 ± 110 mm/yr. Localities in the Antlers Formation

and Woodbine Group with significantly higher MAP estimates

ranging from 952 ± 110 to 1486 ± 110 mm/yr contain more

negative δ13C organic matter values ranging from −23.3 to

−26.1‰. These periods of higher estimated mean annual

precipitation correspond to and are likely driven by various

transgressions onto the Texas craton during sea level

TABLE 1. Measured δ13C of organic matter (δ13COM ‰ VPDB), of acid-treated bulk paleosol samples from the Woodbine Group

(Cenomanian)

Location Sample Formation (Age) δ13Com (‰ VPDB)

Arlington Archosaur Site 15CS717-1 Woodbine Group (Cenomanian) -24.15

15CS717-2 -26.09

15CS717-3 -23.58

15CS717-4 -25.19

15CS717-5 -22.22

15CS717-6 -24.98

15CS717-7 -24.21

15CS717-8 -25.42

15CS717-9 -23.62

15CS717-10 -24.58

15CS717-11 -24.08

15CS717-15 -23.28

15CS717-17 -24.24

15CS717-18 -25.01

15CS717-19 -24.69

15CS717-20 -25.03

15CS717-21 -25.73

15CS717-9 proximal end -23.44

15CS717-9 middle -24.00

15CS717-9 distal end -23.69

AA1 -25.59

Acme Brick Pit Woodbine Group (Cenomanian)

Above ABP -25.92

ABP B Horizon -25.83
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FIGURE 2. (A) Measured δ13C of organic matter from this study and Andrzejewski et al. (2022). Squares represent the mean δ13C of organic

matter of each locality and error bars show minimum and maximum values recorded. (B) Mean annual precipitation estimates for each

locality produced from weathering proxies of bulk paleosol material (Andrzejewski and Tabor 2020). Circles represent estimated value with a

reported error of ±110 mm/yr. (C) Atmospheric pCO2 estimates produced from paleosol carbonates at localities PL, JR, and CR with mean

estimates represented as diamonds and error bars showing minimum and maximum estimated values (Andrzejewski et al. 2022). Atmospheric

pCO2 estimates produced from stomatal data from Cenomanian deposits in Utah with mean estimate represented as triangle with error bars

showing minimum and maximum estimated values (Barclay et al., 2010). 
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highstands, which provided new moisture sources (Andrzejewski

and Tabor, 2020). However, mean annual precipitation does

not explain the significant decrease in the δ13C of organic

matter between the PL and JR localities in the Twin

Mountains Formation as both exhibit similar MAP estimates

of 331 ± 110 and 365 ± 100 mm/yr respectively.

The lack of consistency between precipitation and the δ13C

of plant organic matter when comparing the PL and JR

localities leads to the less understood and constrained influence

that changes in atmospheric pCO2 levels have on the δ13C of

plant organic matter. While the relationship between fluctuating

atmospheric pCO2 levels and the δ13C of plant organic matter

is still debated, two recent studies have shown a negative

correlation, with increased atmospheric pCO2 levels corresponding

to more negative δ13C signatures in plant organic matter

(Breecker, 2017; Hare et al. 2018). A study by Hare et al.

(2018) found a pCO2

 effect on the δ13C of organic matter in

gymnosperms of −1.4 ± 1.2‰ per 100ppmV during the last

deglaciation using ice cores and fossil plant materials.

Results from Breecker (2017) found a pCO2

 effect on the

δ13C of organic matter of −1.6 ± 0.3‰ per 100 ppmV (1σ)

during the Quaternary using data collected from speleothems.

Atmospheric pCO2 estimates produced in Andrzejewski et al.

(2022) using paleosol carbonates show a significant increase

between the PL and JR localities in the Twin Mountains

Formation with atmospheric pCO2 from locality PL ranging

from 67-183 ppmV to locality JR ranging from 313-1108

ppmV (Fig. 2). Given that both the PL and JR localities have

similar paleoprecipitation estimates yet show a negative shift

of ~3.5‰ in the δ13C of organic matter it provides an

opportunity to estimate the influence of changes in atmospheric

pCO2 levels on the δ13C of organic matter during the Early

Cretaceous. When the average pCO2

 estimates from the PL

and JR localities are combined with the negative 3.5‰ shift

FIGURE 3. Microscopic images of the youngest population of zircon grains analyzed from the Jones Ranch locality in the Twin Mountains

Formation. Note circles on the grains where laser ablation sample was targeted. Scale bar equals 50 µm.

FIGURE 4. Concordia plot of youngest population of zircon grains

(n = 4) collected from the Jones Ranch locality in the Twin

Mountains Formation. Analysis reveals an age of 113.1 ± 1.45 MA.
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in organic carbon values it reveals a pCO2

 effect on the δ13C

of organic matter of −0.9 ± 0.5‰ per 100ppmV (Fig. 5). This

range appears consistent with the studies conducted by Hare

et al. (2018) and Breecker (2017). Notably, these results

confirm the direct influence of global atmospheric processes

on terrestrial organic carbon in deep time.

To further investigate the significant increase in atmospheric

pCO2 a bulk paleosol sample was collected from the JR

locality to extract and date zircon grains by the U-Pb method.

Paleosols have been shown to be a great source for volcanic

zircon, yielding U-Pb ages close to the age of deposition (e.g.

Smith et al. 2017). Many paleosols can be referred to as

cryptotephras. While they may not stand out as immediately

recognizable volcanic ash deposition in the field like white

bentonite clay layers, they may contain microscopic fragments

from volcanic tephra deposits that can be separated and

analyzed using technical laboratory techniques (Davies, 2015;

Joeckel et al., 2023). Results from the analyzed 175 zircon

grains in this study revealed a youngest population consisting

of 4 grains to produce a maximum depositional age of

113.1 ± 1.5 Ma. This age provides the first absolute age for

this important fossil locality and confirms its geochronological

position near the Aptian/Albian boundary. Furthermore, it

confirms a rapid rise in atmospheric pCO2 near the onset of

ocean anoxic event 1b (OAE1b: 113-109 Ma; Leckie et al.

2002). Several black-shales have been identified and described

as events within OAE1b including the 113/Jacob (Aptian),

the Kilian (Aptian-Albian boundary), the Paquier (Albian),

and the Lenhardt (Albian) (Leandro et al. 2022). While the

current sample set of one zircon U-Pb maximum depositional

age does not provide the resolution needed to correlate the

changes in atmospheric pCO2 with any of these specific

events, future work including extraction of zircon from

multiple samples from the remaining fossil localities and

increasing precision of the dates using the CA-ID-TIMS

dating techniques would provide the clarity needed to understand

climatic and atmospheric shifts and their association with

global carbon events. Increased age resolution could also be

provided by improving stratigraphic coverage through obtaining

and analyzing core samples in the study area. Together, the

presented dataset confirms how deep time proxies from

paleosols can contribute to our understanding of climatic,

atmospheric, and biological processes during earth’s history

including critical periods where greenhouse climatic conditions

persisted and highlight the necessity for continued study.

CONCLUSION

Data produced from chemical, mineralogical, and stable

isotopic analyses from Mid-Cretaceous (Aptian-Cenomanian)

paleosols sampled from fossil localities in north-central Texas

and southern Oklahoma reveal insight into the biotic response

of the δ13C of plant organic matter to changes in estimated

mean annual precipitation and atmospheric pCO2. Localities

reporting low paleoprecipitation estimates correlate with

more positive δ13C organic matter values while localities

reporting high paleoprecipitation estimates correlate with

more negative δ13C organic matter values which is consistent

with observations in modern systems. The changes in

estimated mean annual precipitation appear to be related to

regional transgressive/regressive events, with higher mean

annual precipitation estimates occurring due to new moisture

sources provided by various transgressions onto the Texas

craton during sea level highstands. To understand and constrain

the influence of changes in atmospheric pCO2 levels on the

FIGURE 5. Effect of atmospheric pCO2 on mean stable carbon

isotope composition of plant organic matter (modified from Hare et

al., 2018). Estimate from Hare et al. (2018) include data produced

from gymnosperms from the last deglaciation. Estimate from

Breecker (2017) include data from speleothems from the Quaternary.

Estimate from this study include data from paleosol carbonates

during the Aptian/Albian. 
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δ13C of plant organic matter, paleosol carbonates from two

localities (Proctor Lake and Jones Ranch) with consistent

mean annual precipitation estimates but significant differences

in estimated atmospheric pCO2 estimates were used to

estimate a pCO2 effect of −0.4 to −1.4‰ per 100 ppmV on

the δ13C values of organic matter. U-Pb dating of zircon

collected from the Jones Ranch locality indicates a maximum

depositional age of 113.1 ± 1.5 Ma (n = 4, Figs. 3, 4). This

provides the first reported absolute age dating for the Twin

Mountains Formation and is a valuable time constraint for a

reported increase in atmospheric pCO2 occurring at the

Aptian/Albian boundary and near the onset of the OAE1b

interval suggesting a global influence on the δ13C of

terrestrial plant organic matter. Together these data exhibit

how deep time proxies from paleosols can contribute to our

knowledge and understanding of interactions among biotic,

climatic, and atmospheric processes occurring at both regional

and global scales while also providing crucial paleoclimatic,

paleoatmospheric, and geochronological data for periods

where greenhouse climate conditions persisted. Future work

to constraint geochronology of the remaining fossil localities

and increase stratigraphic coverage will continue to provide

more resolution into the complex interaction of regional and

global changes occurring during the Mid-Cretaceous transition

in Texas and Oklahoma.
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